On the matching polynomial of subdivision graphs
نویسندگان
چکیده
Let G be a simple graph and let S(G) be the subdivision graph of G, which is obtained from G by replacing each edge of G by a path of length two. In this paper, by the Principle of Inclusion and Exclusion we express the matching polynomial and Hosoya index of S(G) in terms of the matchings of G. Particularly, if G is a regular graph or a semi-regular bipartite graph, then the closed formulae of the matching polynomial and Hosoya index of S(G) are obtained. As an application, we prove a combinatorial identity.
منابع مشابه
Matching Integral Graphs of Small Order
In this paper, we study matching integral graphs of small order. A graph is called matching integral if the zeros of its matching polynomial are all integers. Matching integral graphs were first studied by Akbari, Khalashi, etc. They characterized all traceable graphs which are matching integral. They studied matching integral regular graphs. Furthermore, it has been shown that there is no matc...
متن کاملRelationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications
ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...
متن کاملA new result on chromaticity of K4-homoemorphs with girth 9
For a graph $G$, let $P(G,lambda)$ denote the chromatic polynomial of $G$. Two graphs $G$ and $H$ are chromatically equivalent if they share the same chromatic polynomial. A graph $G$ is chromatically unique if any graph chromatically equivalent to $G$ is isomorphic to $G$. A $K_4$-homeomorph is a subdivision of the complete graph $K_4$. In this paper, we determine a family of chromatically uni...
متن کاملTotal Roman domination subdivision number in graphs
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
متن کاملON THE MATCHING NUMBER OF AN UNCERTAIN GRAPH
Uncertain graphs are employed to describe graph models with indeterministicinformation that produced by human beings. This paper aims to study themaximum matching problem in uncertain graphs.The number of edges of a maximum matching in a graph is called matching numberof the graph. Due to the existence of uncertain edges, the matching number of an uncertain graph is essentially an uncertain var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 157 شماره
صفحات -
تاریخ انتشار 2009